1	(i)	$\begin{aligned} & \text { Mean }=\frac{759.00}{60}=£ 12.65 \\ & \text { Sxx }=11736.59-\frac{759^{2}}{60}=2135.24 \\ & s=\sqrt{\frac{2135.24}{59}}=£ 6.02 \end{aligned}$	B1 M1 A1 [3]	Ignore units For Sxx CAO ignore units Allow more accurate answers	CAO Do not allow 759/60 as final answer but allow $12{ }^{13} / 20$ M1 for 11736.59-60 \times their mean ${ }^{2}$ BUT NOTE M0 if their $S_{x x}<0$ For s ${ }^{2}$ of 36.2 (or better) allow M1A0 with or without working For RMSD of 5.97 or 5.96 (or better) allow M1A0 provided working seen For RMSD ${ }^{2}$ of 35.6 (or better) allow M1A0 provided working seen
	(ii)	New mean $=12.65 \times 1.02=£ 12.90$ New sd $=6.02 \times 1.02=£ 6.14$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	FT their mean Awrt 12.90 Allow 12.9 FT their sd	If candidate 'starts again' only award marks for CAO Deduct at most 1 mark overall in whole question for overspecification of Mean and 1mark overall for SD
	(iii)	New mean $=12.65+0.25=£ 12.90$ New sd $=£ 6.02$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { [2] } \end{aligned}$	FT their mean Awrt 12.90 FT their sd (unless negative) Awrt 6.02	If candidate 'starts again’ only award marks for CAO Allow sd unchanged (or similar)

2	(i)	$\begin{aligned} \mathrm{P}(X=1) & =\mathrm{P}(\mathrm{~g}, \mathrm{~b})+\mathrm{P}(\mathrm{~b}, \mathrm{~g})+\mathrm{P}(\mathrm{~b}, \mathrm{~b}, \mathrm{~g})+\mathrm{P}(\mathrm{~b}, \mathrm{~b}, \mathrm{~b}, \mathrm{~g}) \\ & =\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{11}{16} \end{aligned}$ OR $\begin{aligned} & \mathrm{P}(X=1)=1-\mathrm{P}(X \neq 1)=1-(\mathrm{P}(\mathrm{bbbb})+\mathrm{P}(\mathrm{ggb})+\mathrm{P}(\mathrm{gggb})+\mathrm{P}(\mathrm{gggg})) \\ & =1-\left(\frac{1}{16}+\frac{1}{8}+\frac{1}{16}+\frac{1}{16}\right)=\frac{11}{16} \end{aligned}$	M1 M1 A1 [3]	For any two correct fractions For all four correct fractions NB Answer given	Must have correct ref to numbers of boys and girls, not just fractions With no extras Accept 0.6875 , not 0.688 . Watch for use of $\mathrm{B}(4,0.5) \mathrm{P}(X \leq 2)=0.6875$ which gets M0M0A0.
	(ii)	$\begin{aligned} & \begin{aligned} & \mathrm{E}(X)=\left(0 \times \frac{1}{16}\right)+\left(1 \times \frac{11}{16}\right)+\left(2 \times \frac{1}{8}\right)+\left(3 \times \frac{1}{16}\right)+\left(4 \times \frac{1}{16}\right) \\ &=1 \frac{3}{8}=1.375 \\ & \mathrm{E}\left(X^{2}\right)=\left(0 \times \frac{1}{16}\right)+\left(1 \times \frac{11}{16}\right)+\left(4 \times \frac{1}{8}\right)+\left(9 \times \frac{1}{16}\right)+(16 \\ &\left.\times \frac{1}{16}\right) \end{aligned} \\ & \quad=2 \frac{3}{4}=2.75 \end{aligned}$	M1 A1 M1 M1 A1 [5]	For $\Sigma r p$ (at least 3 terms correct) A1 CAO Allow 1.38, not 1.4 For $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(\mathrm{X})^{2}$ A1 FT their E(X) provided $\operatorname{Var}(\mathrm{X})>0$ 0.86 , not 0.9	Allow 22/16 Use of $\mathrm{E}(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-1.375)^{2},(-0.375)^{2},(0.625)^{2}$, $1.625^{2}, 2.625^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct) Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5 . Unsupported correct answers get 5 marks. Using 1.38 gets Var of $\mathbf{0 . 8 4 5 6}$ gets A 1

$\begin{aligned} & \mathbf{3} \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \text { Mean }=\frac{1 \times 10+2 \times 40+3 \times 15+4 \times 5}{70}=\frac{155}{70}=2.214 \\ & S_{x x}= \\ & 1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5-\frac{155^{2}}{70}=385-343.21=41.79 \\ & s=\sqrt{\frac{41.79}{69}}=0.778 \end{aligned}$	M1 A1 CAO M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 for attempt at $S_{x x}$ Dep on first M1 A1 CAO If 0.778 or better seen ignore previous incorrect working (calculator answer) Allow final answer to 2 sig fig (www)	5	For M1 allow sight of at least 3 double pairs seen from $1 \times 10+2 \times 40+3 \times 15+4 \times 5$ with divisor 70 . Allow answer of $155 / 70$ or 2.2 or 2.21 or $31 / 14$ oe For $155 / 70=$ eg 2.3 , allow A1 isw M1 for $1^{2} \times 10+2^{2} \times 40+3^{2} \times 15+4^{2} \times 5$ with at least three correct terms Using exact mean leads to $\mathrm{S}_{x x}=41.79, \mathrm{~s}=0.778$, Using mean 2.214 leads to $\mathrm{S}_{x x}=41.87, \mathrm{~s}=0.779$, Using mean 2.21 leads to $\mathrm{S}_{x x}=43.11$ and $\mathrm{s}=0.790$ Using mean 2.2 leads to $\mathrm{S}_{x x}=46.2$ and $\mathrm{s}=0.818$ Using mean 2 leads to $\mathrm{S}_{x x}=105$ and $\mathrm{s}=1.233$ All the above get M1M1A1 except the last one which gets M1M1A0 $\operatorname{RMSD}($ divisor n rather than $n-1)=\sqrt{ }(41.79 / 70)=$ 0.772 gets M1M1A0 Alternative method, award M1for at least 3 terms of and second M1 for all 4 terms of $\begin{aligned} & (1-2.214)^{2} \times 10+(2-2.214)^{2} \times 40+(3-2.214)^{2} \times 15 \\ & +(4-2.214)^{2} \times 5(=41.79) \end{aligned}$ NB Allow full credit for correct answers without working (calculator used)
(ii)	Mean would decrease Standard deviation would increase	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Do not accept increase/decrease seen on their own - must be linked to mean and SD. Allow eg 'It would skew the mean towards zero' And eg ‘ It would stretch the SD' SC1 for justified argument that standard deviation might either increase or decrease according to number with no eggs ($n \leq 496$ increase, $n \geq 497$ decrease)
		TOTAL	7	

PhysicsAndMathsTutor.com

$\begin{aligned} & \hline 4 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & 2 k+6 k+12 k+20 k+30 k=1,70 k=1 \\ & k=\frac{1}{70} \end{aligned}$	M1 A1 NB ANSWER GIVEN	2	For five multiples of k (at least four correct multiples) Do not need to sum or $=1$ for M1 Condone omission of either $70 k=1$ or $k=1 / 70$ but not both Condone omission of $k: \quad 2+6+12+20+30=70$ Allow substitution of $k=1 / 70$ into formula and getting at least four of $2 / 70,6 / 70,12 / 70,20 / 70,30 / 70$ for M1 and $2 / 70+6 / 70+12 / 70+20 / 70+30 / 70=1$ for A1
(ii)	$\begin{aligned} & \mathrm{E}(\mathrm{X})=1 \times \frac{2}{70}+2 \times \frac{6}{70}+3 \times \frac{12}{70}+4 \times \frac{20}{70}+5 \times \frac{30}{70}=4 \\ & \mathrm{E}\left(\mathrm{X}^{2}\right)= \\ & 1 \times \frac{2}{70}+4 \times \frac{6}{70}+9 \times \frac{12}{70}+16 \times \frac{20}{70}+25 \times \frac{30}{70}=\frac{1204}{70}=17.2 \\ & \operatorname{Var}(X)=17.2-4^{2}=1.2 \end{aligned}$	M1 for $\operatorname{\Sigma rp}$ (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their $\mathrm{E}(\mathrm{X})^{2}$ A1 FT their $\mathrm{E}(\mathrm{X})$ but not an error in $\mathrm{E}\left(\mathrm{X}^{2}\right)$ provided $\operatorname{Var}(\mathrm{X})>0$	5	280/70 scores M1A0 USE of $\mathrm{E}(x-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see $(-3)^{2},(-2)^{2},(-1)^{2}, 0^{2}, 1^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct with their probabilities) Allow all M marks with their probabilities, (unless not between 0 and 1 , see below for all probs $1 / 70$). Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5 . Unsupported correct answers get 5 marks. SC2 for use of $1 / 70$ for all probabilities leading to $E(X)=3 / 14$ and $\operatorname{Var}(X)=145 / 196=0.74$
		TOTAL	7	

$\begin{aligned} & \hline 5 \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & 4 k+6 k+6 k+4 k=1 \\ & 20 k=1 \\ & k=0.05 \end{aligned}$	M1 A1 NB Answer given	2
(ii)	$\mathrm{E}(\mathrm{X})=1 \times 0.2+2 \times 0.3+3 \times 0.3+4 \times 0.2=2.5$ (or by inspection) $E\left(X^{2}\right)=1 \times 0.2+4 \times 0.3+9 \times 0.3+16 \times 0.2=7.3$ $\operatorname{Var}(\mathrm{X})=7.3-2.5^{2}=1.05$	M1 for $\operatorname{\Sigma rp}$ (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for - their E(X) ${ }^{2}$ A1 FT their E(X) provided $\operatorname{Var}(\mathrm{X})>0$	5
		TOTAL	7

$\begin{aligned} & \hline 6 \\ & \text { (i) } \end{aligned}$	Mean = $\frac{0 \times 37+1 \times 23+2 \times 11+3 \times 3+4 \times 0+5 \times 1}{75}=\frac{59}{75}=0.787$ $\mathrm{S}_{x x}=$ $0^{2} \times 37+1^{2} \times 23+2^{2} \times 11+3^{2} \times 3+4^{2} \times 0+5^{2} \times 1-\frac{59^{2}}{75}=72.59$ $s=\sqrt{\frac{72.59}{74}}=0.99$	M1 A1 M1 for $\Sigma \mathrm{fx}^{2}$ s.o.i. M1 dep for good attempt at $\mathrm{S}_{x x}$ BUT NOTE M1M0 if their $S_{x x}<0$ A1 CAO	5
(ii)	New mean $=0.787 \times £ 1.04=£ 0.818$ or 81.8 pence New $s=0.99 \times £ 1.04=£ 1.03$ or 103 pence	B1 ft their mean B1 ft their s B1 for correct units dep on at least 1 correct (ft)	3
		TOTAL	8

