1	(i)	Mean $=\frac{759.00}{60} = \pounds 12.65$	B1	Ignore units	CAO Do not allow 759/60 as final answer but allow $12^{13}/_{20}$
		$Sxx = 11736.59 - \frac{759^2}{60} = 2135.24$	M1	For Sxx	M1 for 11736.59 - 60 × their mean ² BUT NOTE M0 if their $S_{rr} < 0$
		$s = \sqrt{\frac{2135.24}{59}} = \pounds 6.02$	A1	CAO ignore units Allow more accurate answers	For s^2 of 36.2 (or better) allow M1A0 with or without working
			[3]		For RMSD of 5.97 or 5.96 (or better) allow M1A0 provided working seen For RMSD ² of 35.6 (or better) allow M1A0 provided working seen
	(ii)	New mean = $12.65 \times 1.02 = \pounds 12.90$	B1	FT their mean Awrt 12.90 Allow 12.9	If candidate 'starts again' only award marks for CAO
		New sd = $6.02 \times 1.02 = \pounds 6.14$	B1 [2]	FT their sd	Deduct at most 1 mark overall in whole question for overspecification of Mean and 1mark overall for SD
	(iii)	New mean = $12.65 + 0.25 = \pounds 12.90$	B1	FT their mean Awrt 12.90	If candidate 'starts again' only award marks for CAO
		New $sd = \pounds 6.02$	B1 [2]	FT their sd (unless negative) Awrt 6.02	Allow sd unchanged (or similar)

2 (i)	P(X=1) = P(g,b)+P(b,g)+P(b,b,g)+P(b,b,b,g)	M1	For any two correct	Must have correct ref to numbers of boys
	1 1 1 1 11	M1	For all four correct	With no extras
	$\begin{array}{c} 1 \\ - \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ + \\ - \\ -$	IVI I	for all lour confect	Δ ccept 0.6875, pot 0.688
	4 4 8 16 16	Δ 1	NR Answer given	Watch for use of $B(A, 0.5) P(X<2) = 0.6875$
	OR	AI	ND Answer given	which gets $MOMOAO$
	$P(X=1) = 1 - P(X \neq 1) = 1 - (P(bbbb) + P(ggb) + P(gggb) + P(gggg))$			which gets woworto.
	$\begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix} = 11$			
	$=1 - \left(\frac{16}{16} + \frac{8}{8} + \frac{16}{16} + \frac{16}{16}\right) = \frac{16}{16}$	[3]		
(ii)		M1	For Σrp (at least 3 terms	Allow 22/16
	$E(X) = (0 \times \frac{1}{16}) + (1 \times \frac{1}{16}) + (2 \times \frac{1}{8}) + (3 \times \frac{1}{16}) + (4 \times \frac{1}{16})$	A1	correct)	
			A1 CAO	Use of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$
	3 1 275		Allow 1.38, not 1.4	should see $(-1.375)^2$, $(-0.375)^2$, $(0.625)^2$,
	=1-=1.3/5			1.625^2 , 2.625^2 (if E(X) correct but FT their
				E(X) (all 5 correct for M1), then M1 for
	$\mathbf{F}(\mathbf{V}^2) = (0 \times 1) + (1 \times 11) + (4 \times 1) + (0 \times 1) + (16)$			$\Sigma p(x-\mu)^2$ (at least 3 terms correct)
	$E(X) = (0 \times \frac{1}{16}) + (1 \times \frac{1}{16}) + (4 \times \frac{1}{8}) + (9 \times \frac{1}{16}) + (10$	M1	For $\Sigma r^2 p$ (at least 3 terms	Division by 5 or other spurious value at end
	1		correct)	gives max M1A1M1M1A0, or
	$\left(\times \frac{16}{16}\right)$			M1A0M1M1A0 if $E(X)$ also divided by 5.
				Unsupported correct answers get 5 marks.
	$-2^{3} - 275$			
	-24 -2.75		M1dep for – their $E(X)^2$	
			A1 FT their $E(X)$	Using 1.38 gets Var of 0.8456 gets A1
			provided Var(X) > 0	
	$V_{0}r(X) = 2^{3} (1^{3})^{2} = 5^{5} = 0.850$	MI	0.86, not 0.9	
	$\begin{vmatrix} v_{a1}(x) - 2 1 - 1 - 8 \end{vmatrix} - \frac{1 - 1}{64} - 0.039$	AI		
		[5]		

3	$1 \times 10 + 2 \times 40 + 3 \times 15 + 4 \times 5$ 155			
(i)	Mean = $\frac{1}{70} = \frac{1}{70} = 2.214$	M1 A1 CAO		For M1 allow sight of at least 3 double pairs seen from $1 \times 10 + 2 \times 40 + 3 \times 15 + 4 \times 5$ with divisor 70. Allow answer of 155/70 or 2.2 or 2.21 or 31/14 oe For 155/70 = eg 2.3, allow A1 isw
	$S_{xx} = 1^{2} \times 10 + 2^{2} \times 40 + 3^{2} \times 15 + 4^{2} \times 5 - \frac{155^{2}}{70} = 385 - 343.21 = 41.79$ $s = \sqrt{\frac{41.79}{69}} = 0.778$	M1 for Σfx^2 s.o.i. M1 for attempt at S_{xx} Dep on first M1 A1 CAO If 0.778 or better seen ignore previous incorrect working (calculator answer) Allow final answer to 2 sig fig (www)	5	M1 for $1^2 \times 10 + 2^2 \times 40 + 3^2 \times 15 + 4^2 \times 5$ with at least three correct terms Using exact mean leads to $S_{xx} = 41.79$, s=0.778, Using mean 2.214 leads to $S_{xx} = 41.87$, s=0.779, Using mean 2.21 leads to $S_{xx} = 43.11$ and s = 0.790 Using mean 2.2 leads to $S_{xx} = 46.2$ and s = 0.818 Using mean 2 leads to $S_{xx} = 105$ and s = 1.233 All the above get M1M1A1 except the last one which gets M1M1A0 RMSD(divisor <i>n</i> rather than $n - 1$) = $\sqrt{(41.79/70)} =$ 0.772 gets M1M1A0 Alternative method, award M1for at least 3 terms of and second M1 for all 4 terms of $(1-2.214)^2 \times 10 + (2-2.214)^2 \times 40 + (3-2.214)^2 \times 15 + (4-2.214)^2 \times 5(=41.79)$ NB Allow full credit for correct answers without working (calculator used)
(ii)	Mean would decrease	B1	2	Do not accept increase/decrease seen on their own – must be linked to mean and SD.
	Standard deviation would increase	RI		Allow eg 'It would skew the mean towards zero' And eg 'It would stretch the SD' SC1 for justified argument that standard deviation might either increase or decrease according to number with no eggs (n \leq 496 increase, n \geq 497 decrease)
		TOTAL	7	

4 (i)	$2k + 6k + 12k + 20k + 30k = 1, \ 70k = 1$ $k = \frac{1}{70}$	M1 A1 NB ANSWER GIVEN	2	For five multiples of k (at least four correct multiples) Do not need to sum or =1 for M1 Condone omission of either $70k = 1$ or $k = 1/70$ but not both Condone omission of k : 2+6+12+20+30=70 Allow substitution of $k = 1/70$ into formula and getting at least four of 2/70, 6/70, 12/70, 20/70, 30/70 for M1 and 2/70+6/70+12/70+20/70+30/70 = 1 for A1
(ii)	$E(X) = 1 \times \frac{2}{70} + 2 \times \frac{6}{70} + 3 \times \frac{12}{70} + 4 \times \frac{20}{70} + 5 \times \frac{30}{70} = 4$ $E(X^{2}) = 1 \times \frac{2}{70} + 4 \times \frac{6}{70} + 9 \times \frac{12}{70} + 16 \times \frac{20}{70} + 25 \times \frac{30}{70} = \frac{1204}{70} = 17.2$ $Var(X) = 17.2 - 4^{2} = 1.2$	M1 for Σrp (at least 3 terms correct) A1 CAO M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for - their E(X) ² A1 FT their E(X) but not an error in E(X ²) provided Var(X) > 0	5	280/70 scores M1A0 USE of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see $(-3)^2$, $(-2)^2$, $(-1)^2$, 0^2 , 1^2 (if $E(X)$ correct but FT their $E(X)$) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct with their probabilities) Allow all M marks with their probabilities, (unless not between 0 and 1, see below for all probs 1/70). Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 5. Unsupported correct answers get 5 marks. SC2 for use of 1/70 for all probabilities leading to E(X) = 3/14 and $Var(X) = 145/196 = 0.74$
		TOTAL	7	

5	4k + 6k + 6k + 4k = 1	M1	
(i)	20k = 1 k = 0.05	A1 NB Answer given	2
(ii)	$E(X) = 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.3 + 4 \times 0.2 = 2.5$ (or by inspection)	M1 for Σrp (at least 3 terms correct) A1 CAO	
	$E(X^{2}) = 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.3 + 16 \times 0.2 = 7.3$	M1 for $\Sigma r^2 p$ (at least 3 terms correct) M1dep for – their E(X) ²	
	$Var(X) = 7.3 - 2.5^2 = 1.05$	A1 FT their $E(X)$ provided Var(X) > 0	5
		TOTAL	7

6	Mean =		
(i)	$\frac{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1}{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1} = \frac{59}{0.787} = 0.787$	M1 A1	
	75 75 75		
	$S_{xx} = 59^2$	M1 for Σfx^2 s.o.i.	
	$0^{2} \times 37 + 1^{2} \times 23 + 2^{2} \times 11 + 3^{2} \times 3 + 4^{2} \times 0 + 5^{2} \times 1 - \frac{3^{2}}{75} = 72.59$	M1 <i>dep</i> for good attempt at S _{xx} BUT NOTE M1M0 if their	5
	$s = \sqrt{\frac{72.59}{74}} = 0.99$	$S_{xx} < 0$ A1 CAO	J
(ii)	New mean = $0.787 \times \pounds 1.04 = \pounds 0.818$ or 81.8 pence	B1 ft their mean	
	New s = $0.99 \times \pounds 1.04 = \pounds 1.03$ or 103 pence	B1 ft their s	3
		B1 for correct units <i>dep</i> on at least 1 correct (ft)	
		TOTAL	8